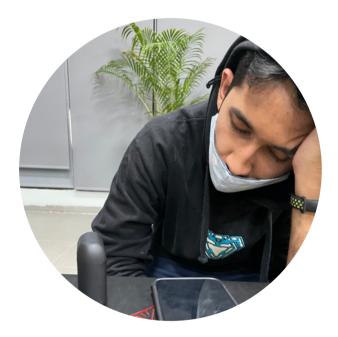
ruch.ai

YOUR EMAIL MOM.

the team. your inbox janitors -

Ex-Computer Science and Artificial Intelligence

Rishi Computer Science and Artificial Intelligence

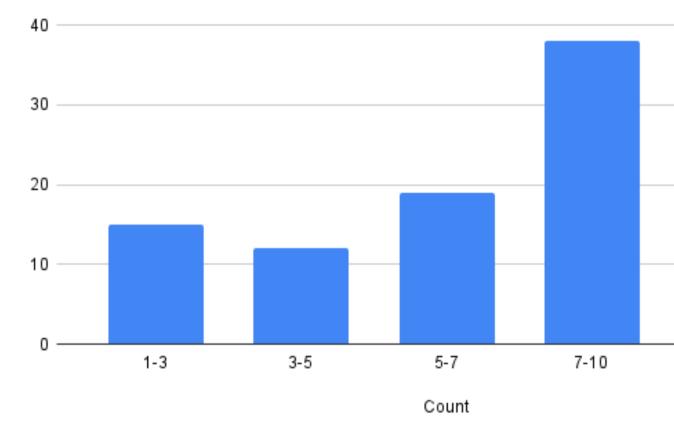


Shaurya

Computer Science and Artificial Intelligence

the problem. outlook - i hate you, i love you.

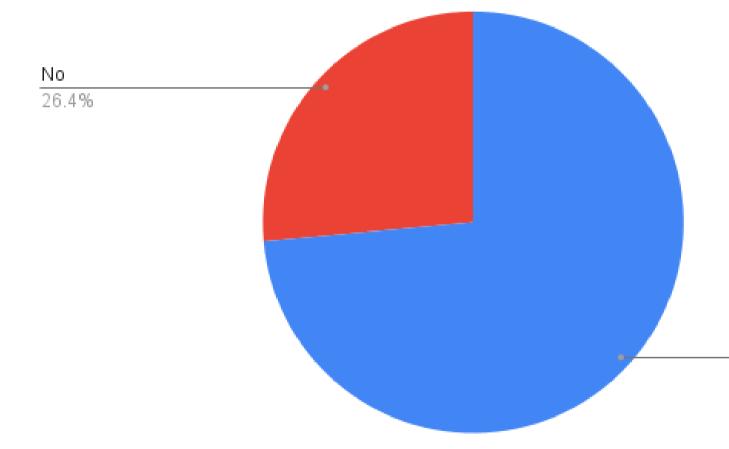
How many emails on average do you receive every day in your Plaksha Inbox?



>10

some cheesy lyric.

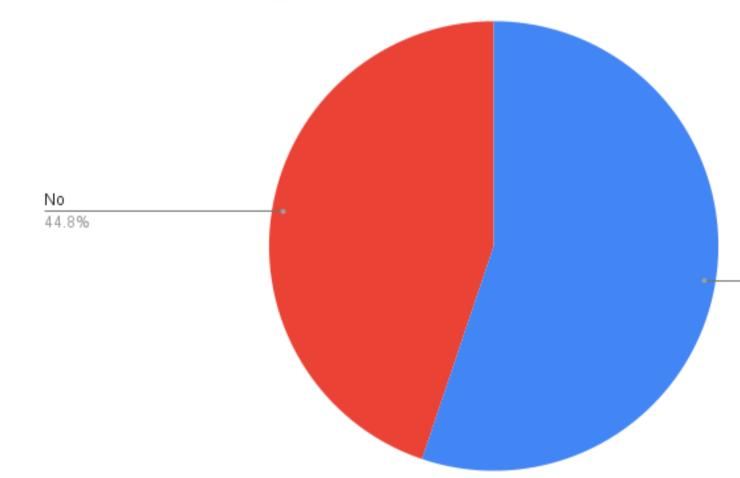
Have you missed deadlines/course announcements/quiz dates because you did not see the email?



Yes 73.6%

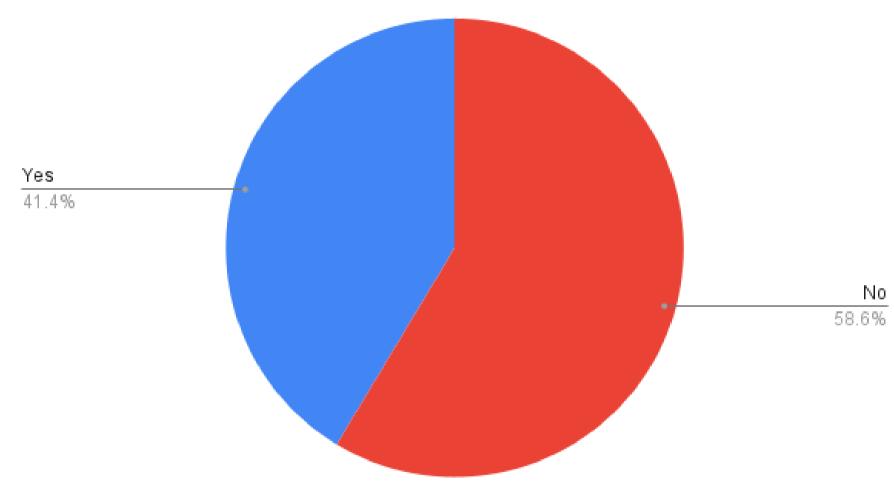
trust me, i'm trying.

Have you missed a non-academic opportunity in the past which you later got to know about through other channels because you did not see the email?



Yes 55.2%

Do you regularly maintain a to-do list to keep track of things?



the problem. **no, but seriously -**

168 million

emails sent every minute

39% emails are information only

29%

emails have unnecessary CCs

15%

emails are important (and they end up getting lost)

Louis Eugene, Isaac Caswell, Making a Manageable Email Experience using Deep Learning, https://cs224d.stanford.edu/reports/EugeneLouis.pdf

17%

emails are irrelevant/spam

a plaksha student -

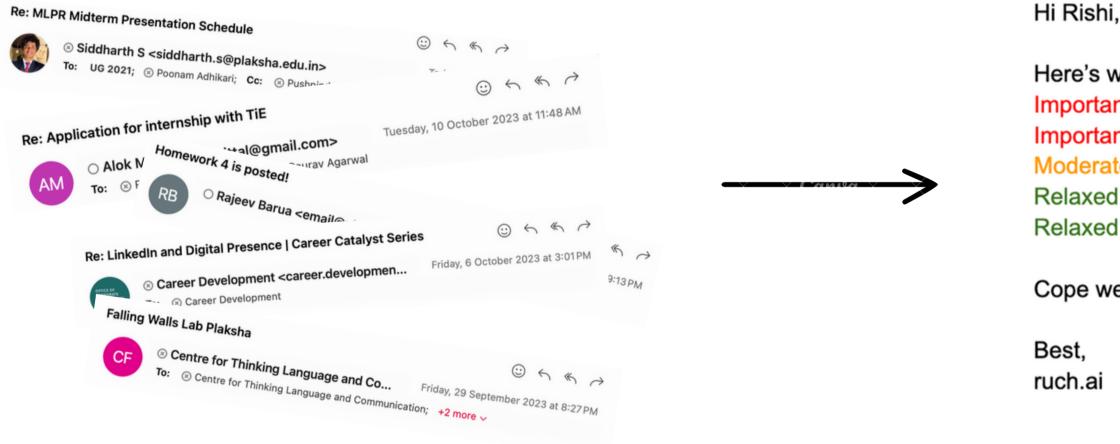
enrols in 6-8 courses/sem receives emails from 16-18 channels

gets overwhelmed

misses deadlines and opportunities

proposed solution. your email mom.

remembering what needs to be done, so you don't have to.



Here's what landed in your inbox today -

Important - MLPR Final Presentation on Friday

Important - PA Assignment due on Wednesday

Moderate - TiE internship follow-up with Mr. Alok Mittal

Relaxed - Become audience at Falling Labs Plaksha

Relaxed - Session on LinkedIn presence on Saturday

Cope well, don't jump off a cliff.

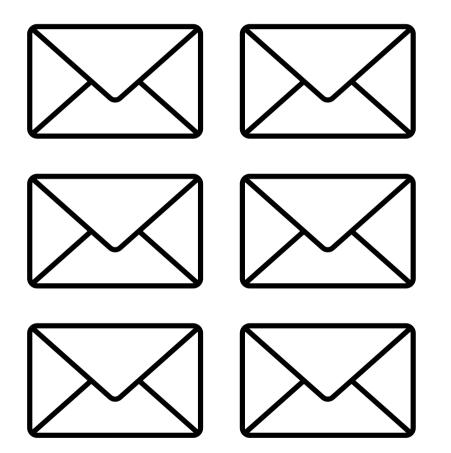
proposed solution. paisa, kya cheez hai paisa -

with rich and diverse data, this approach has potential beyond the walls of MLPR.

government officials

customer support

the data. collecting the data



Considerations during data collection: • the information we need: Senders, Date, Subject, Body

- How we collected:
 - IMAP- failed
 - Tech. Sec.

Ethical concerns:

a condition to skip those emails

• Microsoft Graph API- credits to Devesh Shah, our amazing

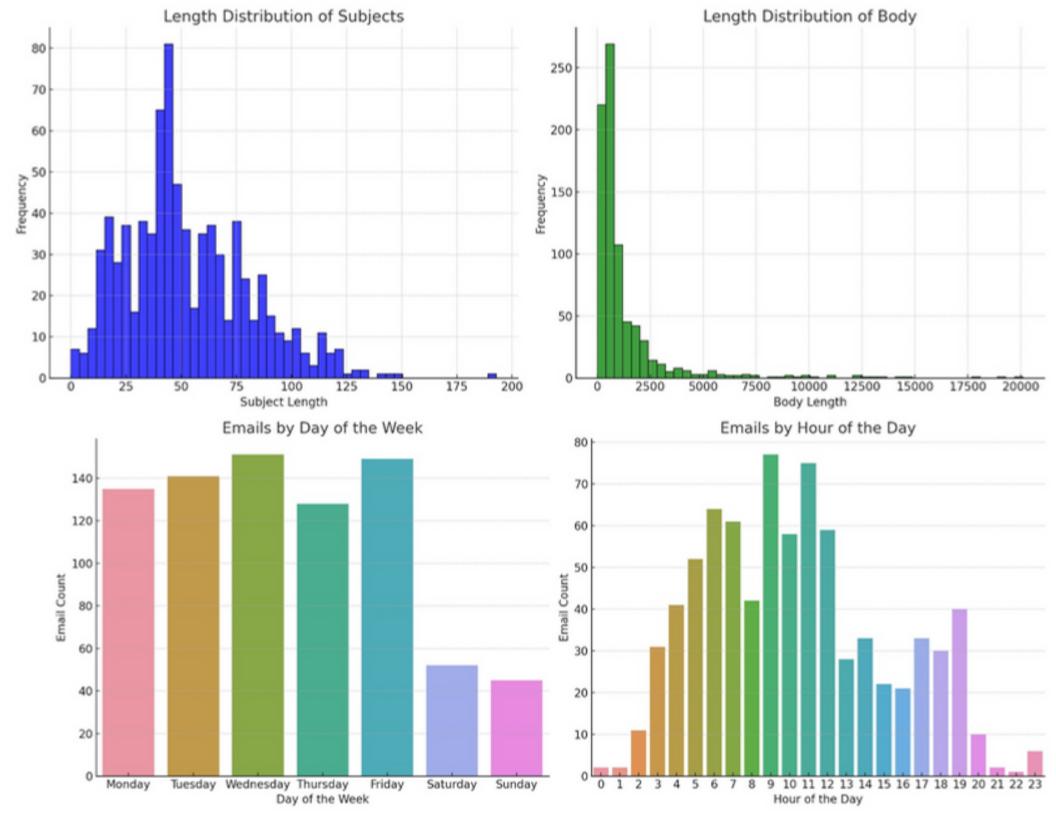
• Private information about certain organisations- created

the data.

pre-processing the data

- 1. removing HTML or Markup
- 2. lowercasing
- 3. tokenization
- 4. stopword removal
- 5. special character and number removal
- 6. expanded contractions
- 7. whitespace trimming
- 8. NaN values were dropped

the data. eda



literature review. existing work -

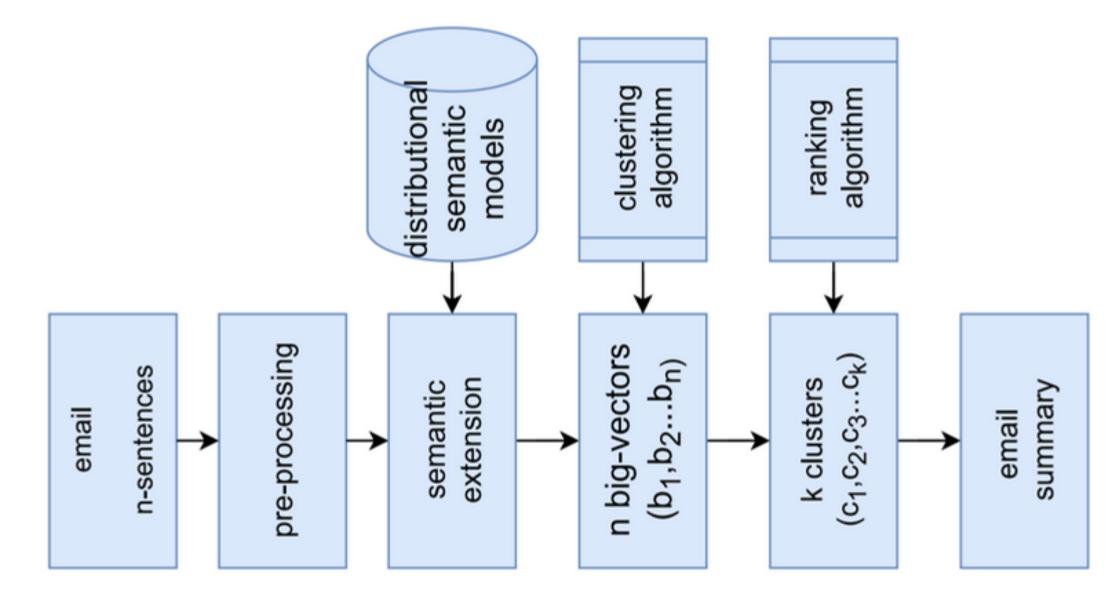
extensive work has been done to mitigate email overload, specifically in the domain of **email classification**.

here, we illustrate a few examples of how this task has been tackled by other groups.

since there is no uniform way to rank email prioritisation systems, the **performance** of these methods depends largely on the **datasets** used.

literature review.

ranking sentences in semantically similar big vectors



Mahira Kirmani, Gagandeep Kaur, Mudasir Mohd,ShortMail: An email summarizer system, Software Impacts, Volume 17, 2023, 100543, ISSN 2665-9638, https://doi.org/10.1016/j.simpa.2023.100543.

literature review.

ranking sentences in semantically similar big vectors

pre-processing -

remove irrelevant content, threads, punctuations, etc. tokenize, convert to lowercase and lemmatize.

ranking -

rank sentences in the clusters based on features, the total score is the sum of the normalized score of each sentence in the cluster. Present top sentences to user

semantic extension use Google's BERT (Bidirectional Encoder Representations from Transformers) to obtain semantics of the text.

features -

1.sentence position
2.frequency (TF-IDF)
3.proper nouns
4.cosine similarity

Mahira Kirmani, Gagandeep Kaur, Mudasir Mohd,ShortMail: An email summarizer system, Software Impacts, Volume 17, 2023, 100543, ISSN 2665-9638, https://doi.org/10.1016/j.simpa.2023.100543.

big vector generation -

concatenate similar words as obtained during semantic extension to rich big vectors

clustering -

use the K-means algorithm to create clusters of semantically similar sentences from big vectors.

ranking sentences in semantically similar big vectors

algorithm for big-vector generation

Let D be input email s_i is the sentences of email D

for all $s_i \in D$ do $W \leftarrow Tokenization(s_i)$ where $W = \{w_1, w_2, w_3, ..., w_n\}$

for all $w_i \in W$ do $V_i \leftarrow BERT(W_i)$ end for $BV = V_1 \oplus V_2 \oplus \cdots \oplus V_{|W|}$ \oplus is concatenation end for Let $\delta(w)$ is a function for retrieving a top list of 'm' words from a semantic model. The function is given as $w' = \delta(w) = w'_1 \oplus w'_2 \oplus, \dots, \oplus w'_m$. For a sentence with $W = \{w_1, w_2, w_3, \dots, w_k\}$ as the sequence of k tokenized words, a big-vector BGV is populated by concatenating respective top m similar words for each word i.e $BGV = \{\delta(w_1) \oplus \delta(w_2) \oplus, \dots, \oplus \delta(w_k)\}$.

Mahira Kirmani, Gagandeep Kaur, Mudasir Mohd,ShortMail: An email summarizer system, Software Impacts, Volume 17, 2023, 100543, ISSN 2665-9638, https://doi.org/10.1016/j.simpa.2023.100543.

summarization using statistical methods

each sentence is represented as a vector of **7 features**, each feature being a value between 0 and 1.

130 emails were summarised using this approach and by a human for reference. these summaries were then compared.

Mithak I. Hashem, Improvement of Email Summarization using Statistical Based Methods, https://ijcsmc.com/docs/papers/February2014/V3I2201488.pdf

summarization using statistical methods

title feature

 $S.S.(1) = \frac{No.of \ Title \ Words \ in \ Sentence \ S}{No.of \ Words \ in \ title}$

term weight feature

where *tfi* is the term frequency of word *i* in the document, *N* is the total number of sentences, and *n* is number of sentences in which word *i* occurs. This feature can be calculated as follows [19]:

S.S.(2) =

Where m is number of words in sente

sentence position feature

$$S.S.(3) = \frac{1}{5} \text{ for the fist sentence}, \frac{5}{5} \text{ for the second}, \frac{4}{5} \text{ for the third}, \\ \frac{3}{5} \text{ for the fourth}, \frac{2}{5} \text{ for the second}, \frac{0}{5} \text{ for the others.}$$
(4)

event feature

S.S. (4) = $\frac{2}{2}$ if place and time have been mentioned in the sentence S, or $\frac{1}{2}$ if one factor (place or time) have been mentioned in the sentence S, or $\frac{0}{2}$ for others.

Mithak I. Hashem, Improvement of Email Summarization using Statistical Based Methods, https://ijcsmc.com/docs/papers/February2014/V3I2201488.pdf

$Wi = tfi x \log N/n$ (2)

$$= \frac{\sum_{i=1}^{m} Wi(S)}{Max[\sum_{i=1}^{m} Wi(S)]_{i=1}^{n}}$$
(3)
ence.

(5)

summarization using statistical methods

proper nouns feature

 $S.S.(5) = \frac{No.of Proper Nouns in the single sentence S}{Maximum number of Prper Nouns within Email}$

numerical data feature

 $S.S.(6) = \frac{No.of Numerical Data in the single sentence S}{Length of the Sentence S}$

topical words feature

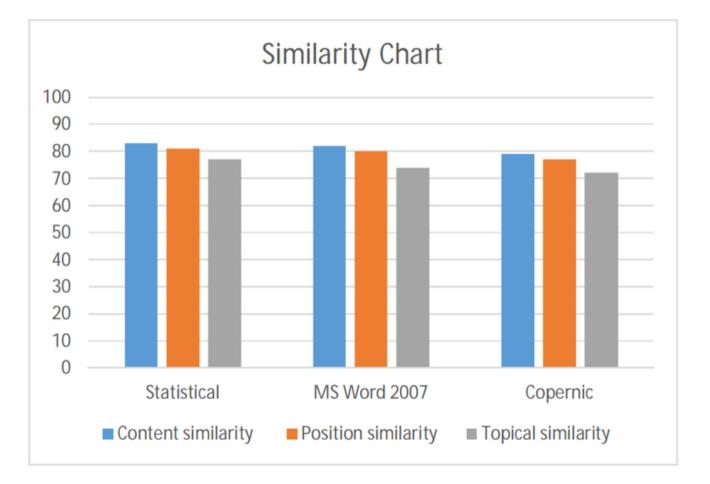
 $S.S.(7) = \frac{No.of \ topical \ words \ in \ the \ single \ sentence \ S}{maximum \ No. \ of \ topical \ words \ in \ the \ Sentence \ S}$

sentence score calculation $Score(S) = \sum_{k=1}^{n} S_{\cdot}S_{\cdot}(k)$

Mithak I. Hashem, Improvement of Email Summarization using Statistical Based Methods, https://ijcsmc.com/docs/papers/February2014/V3I2201488.pdf

summarization using statistical methods

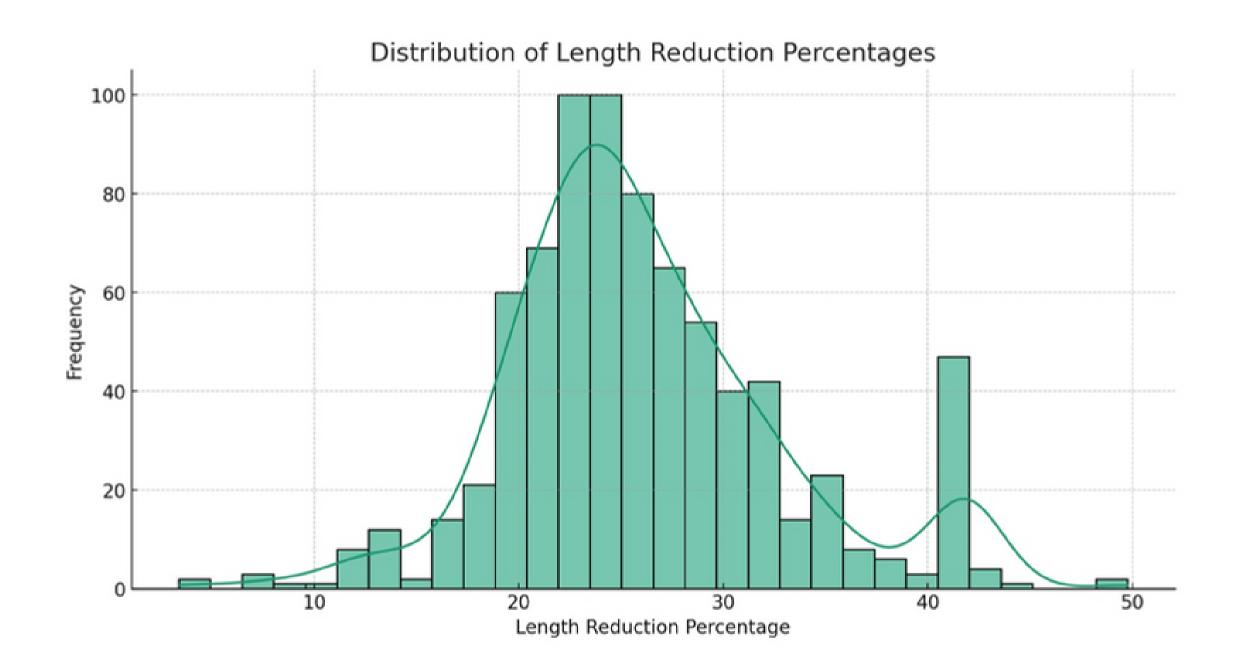
	Average				
Summarizer	Content Similarity	Position Similarity	Topical Similarity		
Statistical	0.83	0.81	0.77		
MS Word 2007	0.82	0.80	0.74		
Copernic	0.79	0.77	0.72		



Mithak I. Hashem, Improvement of Email Summarization using Statistical Based Methods, https://ijcsmc.com/docs/papers/February2014/V3I2201488.pdf

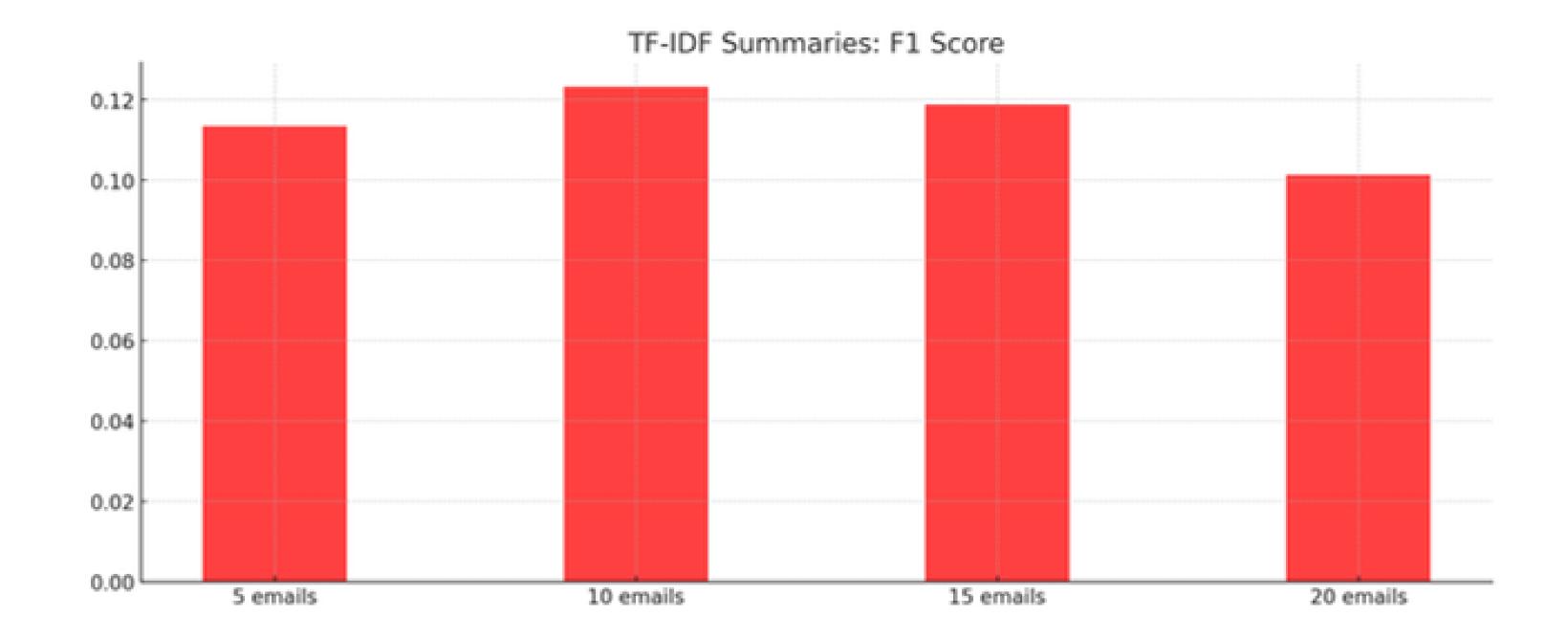
our approach. **summarization - tf-idf**

length reduction:



our approach. **summarization - tf-idf**

f1-score:

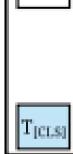


our approach.

summarization - bert

Model	R1	R2	RL		
ORACLE	29.79	8.81	22.66	n	
LEAD	16.30	1.60	11.95		_
Abstractive				Input Document	
PTGEN (See et al., 2017)	29.70	9.21	23.24		
PTGEN+COV (See et al., 2017)	28.10	8.02	21.72	Token Embeddings	E _[CLS]
TCONVS2S (Narayan et al., 2018a)	31.89	11.54	25.75	Littiseuungs	
TransformerABS	29.41	9.77	23.01	Segment	EA
BERT-based	-			Embeddings	
BERTSUMABS	38.76	16.33	31.15	Position	التي
BERTSUMEXTABS	38.81	16.50	31.27	Embeddings	E ₁

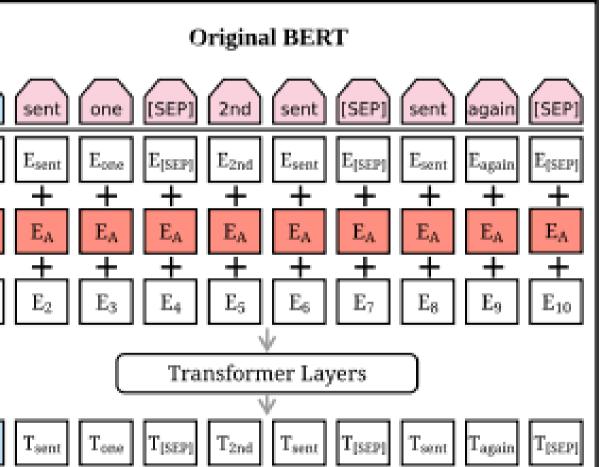
Table 4: ROUGE F1 results on the **XSum** test set. Results for comparison systems are taken from the authors' respective papers or obtained on our data by running publicly released software.



Contextual

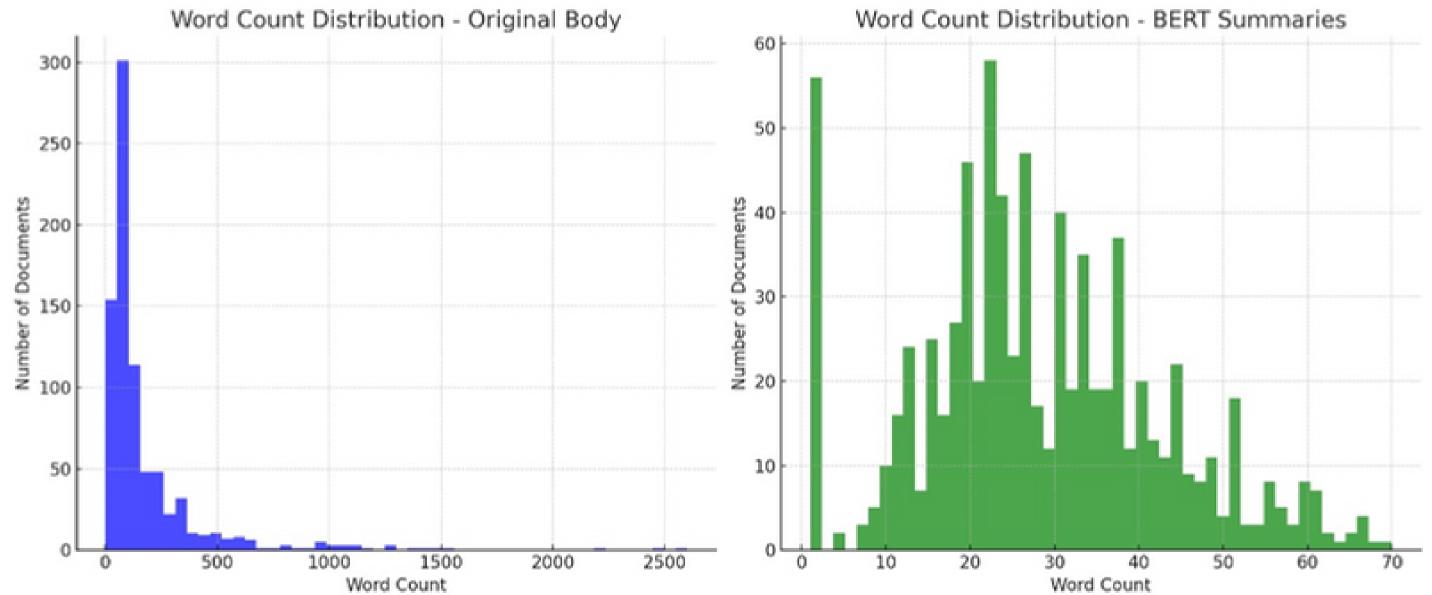
Embeddings

Liu, Y., & Lapata, M. (2019, August 22). Text Summarization with Pretrained Encoders. arXiv.Org. https://arxiv.org/abs/1908.08345v2



our approach. summarization - bert

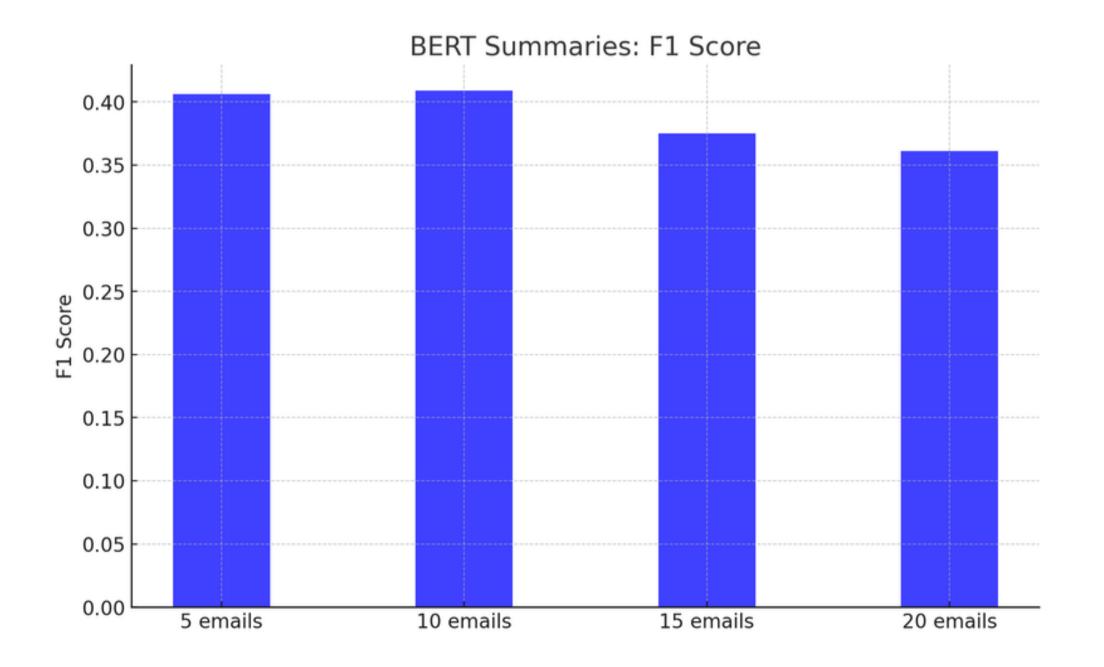
length reduction:



Word Count

our approach. **Summarization - bert**

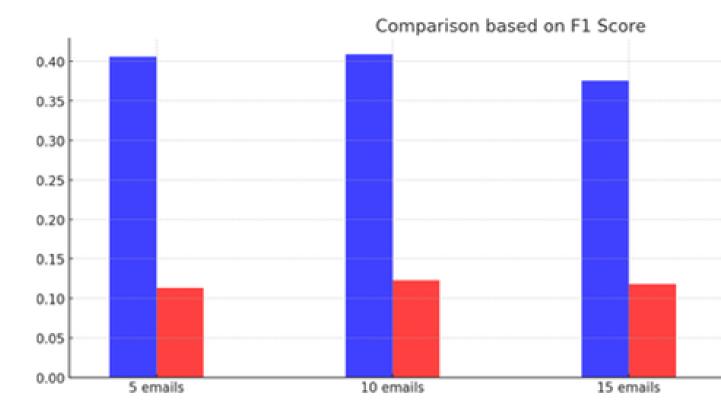
f1-score:

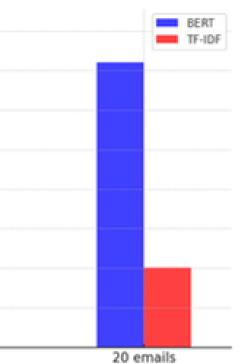


our approach. **tf-idf vs bert**

comparison

	Number of Emails	BERT Precision	BERT Recall	BERT F1 Score	TF-IDF Precision	TF-IDF Recall	TF-IDF F1 Score
0	5	0.320	0.600	0.406	0.069	0.333	0.113
1	10	0.322	0.624	0.409	0.077	0.329	0.123
2	15	0.286	0.617	0.375	0.075	0.327	0.119
3	20	0.265	0.663	0.361	0.063	0.305	0.101





our approach. bert summaries

results

PS C:\Users\bhavi> python -u "c:\Users\bhavi\Downloads\bert_summaries.py"

- Program analysis assignments: due date for the assignment "homework 3" is 2 days aways .
- A student wants to meet with professor tanmoy to discuss their project topic . The preferred date for this discussion is t Tuesday, October 3, 2023 .
- Last call to register and be a part of the audience at the falling walls lab plaksha! on 30th september 2023 .
- Please join tomorrow's class on the microsoft teams link given below at 11:00 am . The students are required to provide their project progress update .
- Search methods in artificial intelligence "9. smai-astar-space-saving-versions" has been created .
- PS C:\Users\bhavi>

prioritisation using deep learning

svm (gaussian kernel) random forests

(100 estimators, split on Gini Criterion)

features bag of words unigrams and bigrams

Eugene, Louis, and Isaac Caswell. "Making a Manageable Email Experience with Deep Learning." Department of Management Science and Engineering, Stanford University; Department of Computer Science, Stanford University. https://cs224d.stanford.edu/reports/EugeneLouis.pdf

VS

lstm & cnn

features dense word vectors (Word2Vec)

literature review. prioritisation using deep learning

data

positives

Parakweet I	Isaac Caswel		
		ta Corpus (600k emails) sentence from an email	two kinds of if the email w
4	ing data 213 ases	testing data 991 cases	
1	631	277	

positives

Eugene, Louis, and Isaac Caswell. "Making a Manageable Email Experience with Deep Learning." Department of Management Science and Engineering, Stanford University; Department of Computer Science, Stanford University. https://cs224d.stanford.edu/reports/EugeneLouis.pdf

well's Stanford Inbox

of labels -

il was replied to and gmail's importance flag

~26,000 emails

labels -

former as a proxy for the email's importance latter as a measure for how well the data agrees with gmail's ranking

prioritisation using deep learning

results

evaluation metric - F1 score

RF SVM LSTM CNN	Parakweet 0.772 0.778 0.809	Isaac-rep-1 0.887 0.876 0.854 0.913	Isaac-imp-1 0.826 0.799 0.801 0.817	Isaac-rep-all 0.891 0.882 0.900	Isaac-imp-all 0.904 0.871 0.879
CNN	0.811	0.913	0.817	0.914	0.900

2.cnn - best-performing algorithm (6.2%) **better performance** than the previous state-of-the-art F1 on Parakweet -

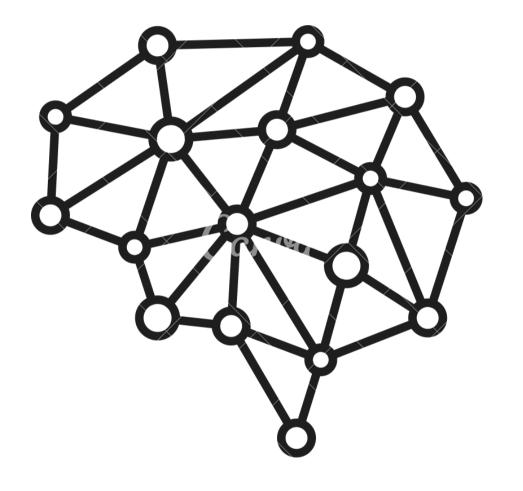
LibSVM)

3. training time for cnn was longer than baseline algorithms (multiple days)

Eugene, Louis, and Isaac Caswell. "Making a Manageable Email Experience with Deep Learning." Department of Management Science and Engineering, Stanford University; Department of Computer Science, Stanford University. https://cs224d.stanford.edu/reports/EugeneLouis.pdf

1. cnn and lstm outperformed the baselines 81-91% F1 Scores

ml methodology. where and how ML is used



we will be evaluating multiple machine learning algorithms on our pre-processed data to prioritize emails based on their importance and whether they require a response

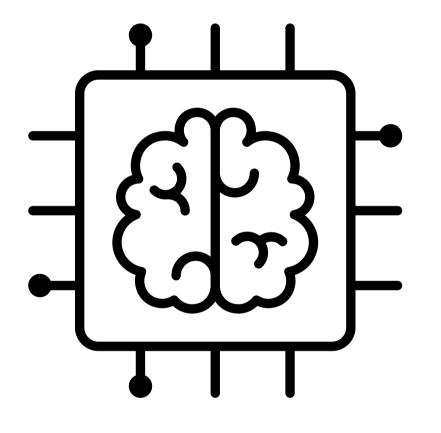
the ml model would be to prioritise basis these 3 features:

- 1. does the message require action?

important?

2. has the email service labeled this email as

support vector machines



- Support Vector Machine (SVM) is a machine learning algorithm that finds the best hyperplane to separate different classes in a dataset, maximizing the margin between them.
- Our baseline model employs a Support Vector Machine with a RBF kernel, processing unigram and bigram features extracted through TF-IDF vectorization of the BERT Summaries.
- it served as an excellent base classical machine learning model used for multi -class classification.

performance- support vector machine

Accuracy: 0.7181208053691275					
Classification Report: precision recall					
	ргестатоп	recure			
1	0.63	0.85			
2	0.78	0.76			
3	0.92	0.38			
accuracy					
macro avg	0.78	0.66			
weighted avg	0.75	0.72			

1-	-s	С	0	re	-
	0		7	2	
	0		7	7	
	0		5	4	
	0		7	2	
	0		6	8	
	0		7	1	

What is CNN?

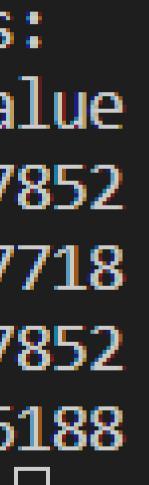
A Convolutional Neural Network (CNN) is a deep learning architecture designed for image processing and pattern recognition. It uses convolutional layers to automatically learn and extract hierarchical features from input data.

Why CNN?

CNN was the best-performing deep approach in the Stanford study. Moreover, CNNs capture local patterns and hierarchical features in text, enabling effective feature extraction for text prioritisation.

performance- CNN

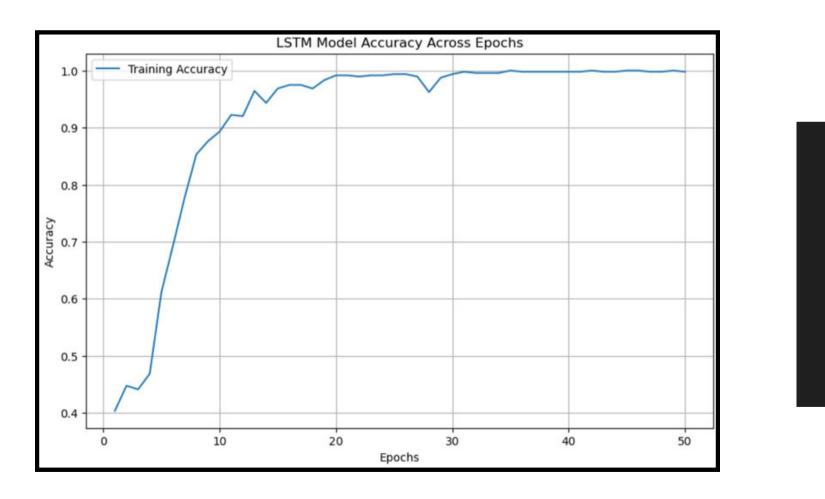
Performance Metrics: Metric Value Accuracy 0.677852 0 1 Precision 0.677718 Recall 0.677852 2 F1 Score 0.676188 3



- LSTM captures short and long-term dependencies.
- It identifies keywords, sentiment, and important phrases (sequential and contextual understanding) for relevance and urgency assessment.
- The model is trained on labeled email data with a focus on optimizing accuracy.
- Once trained, it can efficiently evaluate new emails based on content, enabling automated email prioritization.

ml methodology. performance- LSTM

> The optimal dropout rate is 0.2. The optimal recurrent dropout rate is 0.300000000000000004. The optimal learning rate for the optimizer is 0.00031418620419296233.



Accuracy: 0.7785 Precision: 0.7787 Recall: 0.7785 F1-Score: 0.7764

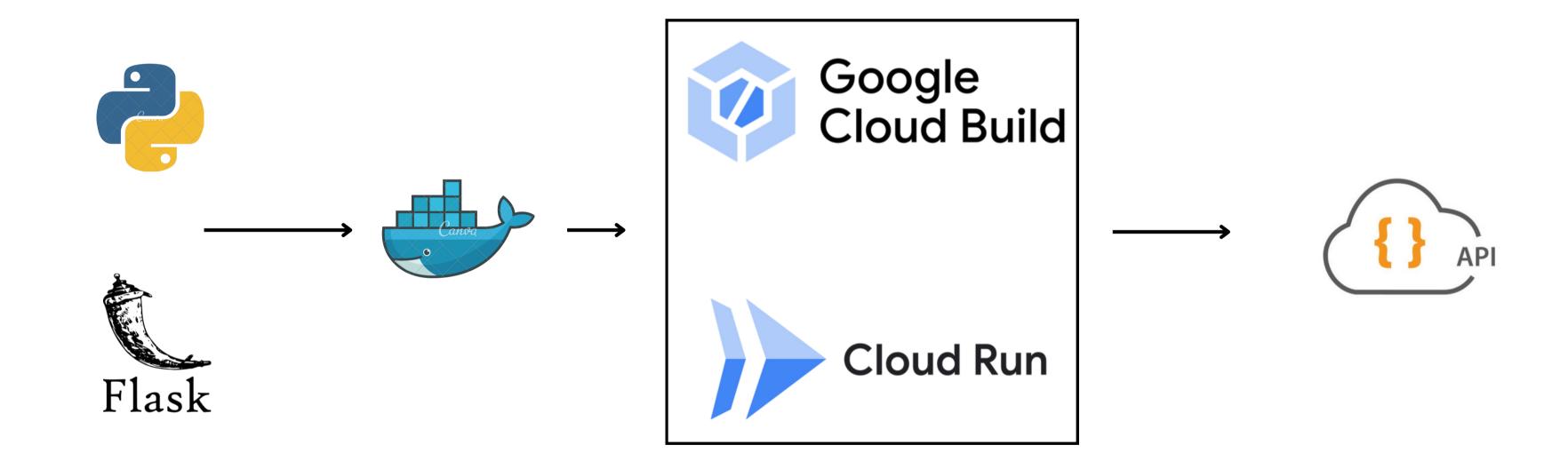
comparitive analysis

Metric	SVM	CNN	LSTM
Accuracy	0.7181	0.677	0.7785
Precision	0.75	0.677	0.7787
Recall	0.72	0.677	0.7785
F1-Score	0.71	0.676	0.7765

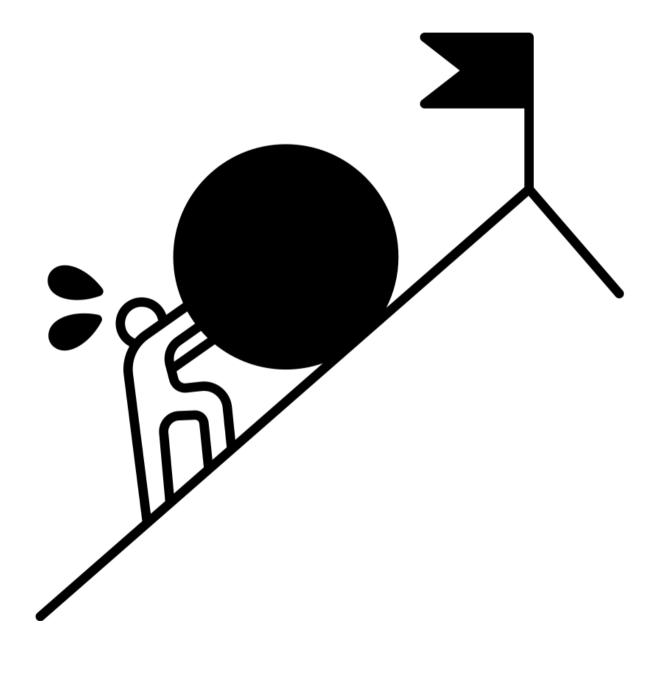
Table 1: Comparison of SVM, CNN, and LSTM

winner-LSTM!!

deployment pipeline -



what else challenges and future possibilities

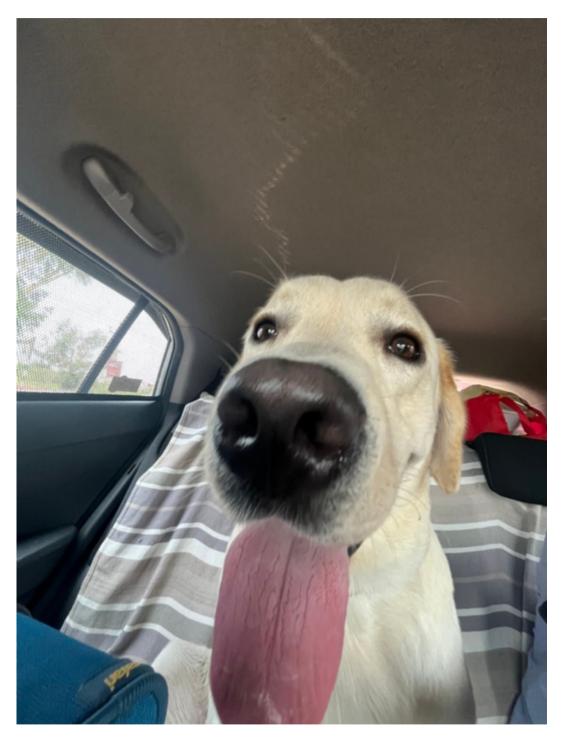


1. labeling and upscaling training data - only option was and to manually label all the emails which was time-consuming and had 3 different perspectives. For better accuracy, we can upscale the data.

2. ethical concerns over data - users may be not comfortable with the idea of an ai tool having access to potentially sensitive information. 3. task ambiguity - prioritization and summarization tasks are highly subjective and context-dependent. Defining what is important and summarizing information accurately is challenging and highly personal. For the future, we can emply a personalised priority rank system using outlook plugins and personalised model training. 4. **plugin**- we plan to integrate our model into an Outlook add-in, designed for the academic community at Plaksha University.

thank you.

ruch.ai



(Scout consents to this image being taken.)